Keratinocyte growth factor and its receptor are involved in regulating early lung branching.

نویسندگان

  • M Post
  • P Souza
  • J Liu
  • I Tseu
  • J Wang
  • M Kuliszewski
  • A K Tanswell
چکیده

Lung branching morphogenesis depends on mesenchymal-epithelial tissue interactions. Keratinocyte growth factor (KGF) has been implicated to be a regulator of these tissue interactions. In the present study, we investigated the role of KGF in early rat lung organogenesis. Reverse transcriptase-polymerase chain reaction analysis revealed KGF mRNA expression in the mesenchymal component of the 13-day embryonic lung, while message for KGF receptor (KGFR) was expressed in the epithelium, confirming the paracrine nature of KGF/KGFR axis. Antisense KGF oligonucleotides inhibited DNA synthesis of embryonic lung explants. This inhibitory effect of antisense KGF was partially reversed by the addition of exogenous KGF. Recombinant KGF was mitogenic for 13-day isolated embryonic lung epithelial cells. Medium conditioned by 13-day lung mesenchymal cells also stimulated DNA synthesis of 13-day embryonic lung epithelial cells. This stimulatory effect was partially abrogated by a neutralizing KGF antibody. The number of terminal buds of lung explants cultured in the presence of antisense KGF oligonucleotides was significantly reduced compared to control explants. Exogenous KGF partially abrogated the inhibitory effect of antisense KGF on early lung branching. Sense or scrambled KGF oligonucleotides had no inhibitory effect on lung growth and branching. Addition of neutralizing KGF antibodies to the explants also reduced the degree of branching, while non-immune IgG and neutralizing acidic FGF antibodies had no effect. Explants incubated with antisense oligonucleotides targeted to the initiation site of translation of both the splice variants of the fibroblast growth factor receptor-2 (FGFR2) gene, KGFR and bek, exhibited a similar reduction in lung branching as observed with antisense KGF oligonucleotides. Antisense KGFR-specific oligonucleotides dramatically inhibited lung branching, while exposure of explants to antisense bek-specific oligonucleotides resulted in reduced branching albeit to a lesser degree than that observed with antisense KGFR-specific oligonucleotides. Neither sense nor scrambled KGFR-specific oligonucleotides had any effect on early lung branching. These results suggest that the KGF/KGFR system has a critical role in early lung organogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development.

Mesenchymal-epithelial tissue interactions are important for development of various organs, and in many cases, soluble signaling molecules may be involved in this interaction. Hepatocyte growth factor (HGF) is a mesenchyme-derived factor which has mitogenic, motogenic and morphogenic activities on various types of epithelial cells and is considered to be a possible mediator of epithelial-mesenc...

متن کامل

The biological role of platelet-derived growth factor (PDGF)-AA in lung morphogenesis was investigated by incubating embryonic lung explants with phosphorothioate antisense PDGF-A oligonucleotides, which decreased PDGF-AA but not PDGF-BB protein content. Antisense PDGF-A oligonucleotides inhibited DNA

Branching morphogenesis of many organs, including lung, has been shown to take place in response to epithelial-mesenchymal tissue interactions (Rudnick, 1933; Wessels, 1977). The molecular signals guiding branching morphogenesis are largely unknown. As branching morphogenesis involves cell proliferation, migration and differentiation, the ontogenic sequence of these events in early lung organog...

متن کامل

Exogenous fibroblast growth factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung.

OBJECTIVES Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that ...

متن کامل

The Receptor Tyrosine Kinase FGFR2b/KGFR Controls Early Differentiation of Human Keratinocytes

The FGFRs trigger divergent responses, such as proliferation and differentiation, and the cell type as well as the context-dependent signaling are crucial for the functional outcome. The FGFR2b/KGFR is expressed exclusively on epithelial cells and plays a key role in skin homeostasis. Here we analyzed in vitro the role of KGFR in the early differentiation of keratinocytes modulating its express...

متن کامل

Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2.

Epithelial-mesenchymal interactions during lung development require extracellular signaling factors that facilitate branching morphogenesis. We show here that matrix metalloproteinases (MMPs) originating in the mesenchyme are necessary for epithelial branching and alveolization. We found that the delayed lung maturation characterized by abnormal branching and poor alveolization seen in mice def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 122 10  شماره 

صفحات  -

تاریخ انتشار 1996